A comparison of univariate methods for forecasting electricity demand up to a day ahead

نویسندگان

  • James W. Taylor
  • Lilian M. de Menezes
  • Patrick E. McSharry
چکیده

This empirical paper compares the accuracy of six univariate methods for short-term electricity demand forecasting for lead times up to a day ahead. The very short lead times are of particular interest as univariate methods are often replaced by multivariate methods for prediction beyond about six hours ahead. The methods considered include the recently proposed exponential smoothing method for double seasonality and a new method based on principal component analysis (PCA). The methods are compared using a time series of hourly demand for Rio de Janeiro and a series of half-hourly demand for England and Wales. The PCA method performed well, but, overall, the best results were achieved with the exponential smoothing method, leading us to conclude that simpler and more robust methods, which require little domain knowledge, can outperform more complex alternatives. D 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric modeling and forecasting electricity demand: an empirical study

This paper uses half-hourly electricity demand data in South Australia as an empirical study of nonparametric modeling and forecasting methods for prediction from half-hour ahead to one year ahead. A notable feature of the univariate time series of electricity demand is the presence of both intraweek and intraday seasonalities. An intraday seasonal cycle is apparent from the similarity of the d...

متن کامل

Day-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method

Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT...

متن کامل

Application of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market

Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...

متن کامل

Using Weather Ensemble Predictions in Electricity Demand Forecasting

Weather forecasts are an important input to many electricity demand forecasting models. This study investigates the use of weather ensemble predictions in electricity demand forecasting for lead times from one to 10 days ahead. A weather ensemble prediction consists of 51 scenarios for a weather variable. We use these scenarios to produce 51 scenarios for the weather-related component of electr...

متن کامل

Short-term electricity demand forecasting using double seasonal exponential smoothing

This paper considers univariate online electricity demand forecasting for lead times from a half-hour-ahead to a day-ahead. A time series of demand recorded at half-hourly intervals contains more than one seasonal pattern. A within-day seasonal cycle is apparent from the similarity of the demand profile from one day to the next, and a within-week seasonal cycle is evident when one compares the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005